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Abstract

We present the number of totally symmetric quasigroups (equivalently,
totally symmetric Latin squares) of order 16, as well as the number of
isomorphism classes of such objects. Totally symmetric quasigroups
of orders up to and including 16 that are (respectively) medial, idem-
potent, and unipotent are also enumerated.

Suppose xy = z for some elements x, y, z in a quasigroup Q of order n.
We say that Q is totally symmetric if this implies all six permutations of the
symbols x, y, and z in this equation: xz = y, yx = z, yz = x, zx = y, and
zy = x (along with the hypothesized xy = z).

In [Bai79a, Bai79b] Rosemary Bailey enumerated the totally symmetric
quasigroups of orders up to and including n = 10; these results were extended
by Brendan McKay and Ian Wanless through n = 15 in [MW22]. The main
purpose of this paper is to announce the results for n = 16, which are as
follows:

Theorem 1. There are

91,361,407,076,595,590,705,971,200

totally symmetric quasigroups of order 16; these are divided into

4,366,600,209,354

isomorphism classes.
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A brief overview of the algorithm used to calculate this result is given at the
end of this document.

Returning to our totally symmetric quasigroup Q of order n, if

w(x(yz)) = y(x(wz)

for all w, x, y, z ∈ Q, then Q is said to be medial. This property can also
be expressed as (wx)(yz) = (wy)(xz), and has been referred to by various
authors as abelian [Mur41, Bru44, Sch95] or entropic [Eth65]; medial appears
to be the most modernly accepted term [Mar97, Shc05, SV16, You21], and
so has been adopted for this paper.

The interest in medial totally symmetric quasigroups arises naturally in
the study of elliptic curves, where one can define an addition for points on
a curve by fixing a point p (generally taken to be the projective point at
infinity) and defining

x+ y = p(xy).

Under this definition, if Q is totally symmetric, then p is the additive identity,
−x = px, and the addition thus defined is associative if and only if Q is
medial (see the beautiful exercise 1.11 in [ST15], which inspired the author’s
investigation into these objects). This addition enjoys the useful property
that the sum of any two rational points on an elliptic curve C is itself a
rational point on C.

Recent results of Benjamin Young [You21] establish that the number of
medial totally symmetric quasigroups of order n is precisely the number
of “labeled” abelian groups of order n (i.e. counting isomorphic but non-
identical groups separately); this is sequence A034382 in the On-Line Ency-
clopedia of Integer Sequences [OEI]. Furthermore, J. Schwenk [Sch95] gives
a formula for the number of isomorphism classes of medial totally symmetric
quasigroups: If 3 does not divide n, it is precisely the number of isomorphism
classes of abelian groups of order n; otherwise each abelian group of order
n contributes one more than the number of non-isomorphic cyclic 3-groups
in its invariant factor decomposition (for n ≤ 16 with n divisible by 3, each
abelian group of order n has a single such factor, so for the quasigroups con-
sidered in this paper there are in this case twice as many isomorphism classes
of medial totally symmetric quasigroups as there are isomorphism classes of
abelian groups).
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Our data on totally symmetric quasigroups and medial totally symmetric
quasigroups is presented in Table 1, below.

Table 1: Totally Symmetric Quasigroups

Totally Symmetric Quasigroups Medial

Order Number Classes Number Classes

1 1 1 1 1
2 2 1 2 1
3 3 2 3 2
4 16 2 16 2
5 30 1 30 1
6 480 3 360 2
7 1290 3 840 1
8 163,200 13 15,360 3
9 471,240 12 68,040 4

10 386,400,000 139 907,200 1
11 2,269,270,080 65 3,991,680 1
12 12,238,171,545,600 25,894 159,667,200 4
13 149,648,961,369,600 24,316 518,918,400 1
14 8,089,070,513,113,497,600 92,798,256 14,529,715,200 1
15 160,650,421,233,958,656,000 122,859,802 163,459,296,000 2
16 91,361,407,076,595,590,705,971,200 4,366,600,209,354 4,250,979,532,800 5

We include as well (in Table 2) the numbers of idempotent and unipotent
totally symmetric quasigroups and classes, where a quasigroup is idempotent
if xx = x for all x ∈ Q, and unipotent if xx = k for all x ∈ Q and some
fixed k ∈ Q. These properties are closely related; McKay and Wanless
prove that there is a bijective correspondence between isomorphism classes
of idempotent totally symmetric quasigroups of order n and isomorphism
classes of unipotent totally symmetric quasigroups of order n + 1 [MW22,
Theorem 5.2]. We strengthen this theorem slightly:

Theorem 2. The number of unipotent totally symmetric quasigroups of order
n + 1 is precisely n + 1 times the number of idempotent totally symmetric
quasigroups of order n.
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Table 2: Unipotent and Idempotent Totally Symmetric Quasigroups
Idempotent Unipotent

Order Number Classes Number Classes

1 1 1 1 1
2 0 0 2 1
3 1 1 0 0
4 0 0 4 1
5 0 0 0 0
6 0 0 0 0
7 30 1 0 0
8 0 0 240 1
9 840 1 0 0

10 0 0 8,400 1
11 0 0 0 0
12 0 0 0 0
13 1,197,504,000 2 0 0
14 0 0 16,765,056,000 2
15 60,281,712,691,200 80 0 0
16 0 0 964,507,403,059,200 80

Proof. We demonstrate how to construct n + 1 distinct unipotent totally
symmetric quasigroups of order n + 1 from any given idempotent totally
symmetric quasigroup of order n; this procedure can then be reversed to
complete the proof.

Let (Q, ∗) be an idempotent totally symmetric quasigroup of order n, and
let Q′ = Q ∪ {a} where a /∈ Q. If x and y are distinct elements of Q′ − {a},
define x ∗′ y = x ∗ y. Otherwise, for every x ∈ Q, define x ∗′ x = a, so
x∗′a = a∗′x = x by total symmetry. Setting a∗′a = a completes the definition
of (Q′, ∗′), and it is immediately apparent that (Q′, ∗′) is both unipotent and
totally symmetric. There are n + 1 quasigroups isomorphic to (Q′, ∗′), one
for each of the possible choices of element along the diagonal; these are
obtained by applying the transposition (x a) (in cycle notation) to the rows,
columns, and symbols of the multiplication table for Q′ (equivalently, to the
corresponding Latin square).
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To reverse this procedure, let (Q′, ∗′) be any unipotent totally symmetric
quasigroup of order n+1, and assume once again that Q′ = Q∪{a} with a /∈
Q. Then if x ∗′ x = k for all x ∈ Q′, we may construct the quasigroup (Q, ∗)
of order n by first applying the transposition (k a) to the rows, columns, and
symbols of the associated multiplication table (Latin square), so that x∗′x =
a for all x in the result. Removing the ath row and column, setting x ∗ x = x
for all x ∈ Q, and otherwise letting x ∗ y = x ∗′ y results in a quasigroup
Q that is clearly both idempotent and totally symmetric; moreover, each of
the n + 1 unipotent quasigroups Q′ described in the preceding paragraph
generate precisely this quasigroup.

Finally, observe that since x∗′ y = x∗y for all distinct x, y ∈ Q, the n+ 1
unipotent quasigroups Q′ of order n+1 corresponding to a given idempotent
quasigroup Q of order n are the only unipotent quasigroups corresponding
to Q in this manner; any other unipotent quasigroup of order n + 1 must
correspond (in the same manner) to a different idempotent quasigroup of
order n.

The results of Bailey, McKay and Wanless, Young, and Schwenk all pro-
vide independent confirmation of the correctness of the results reported in
Theorem 1, as the software used to establish that theorem reproduces a great
many of the results computed and predicted by these authors. Specifically,
the software gives:

- the number of totally symmetric quasigroups, as well as the number
of isomorphism classes of totally symmetric quasigroups, computed by
McKay and Wanless for sets of order n ≤ 15 (agreeing, of course, with
Bailey’s results for n ≤ 10);

- the number of medial totally symmetric quasigroups of order n for all
n ≤ 16 predicted by Young;

- the number of isomorphism classes of medial totally symmetric quasi-
groups of order n for all n ≤ 16 predicted by Schwenk;

- the number of idempotent totally symmetric quasigroups, as well as
the number of isomorphism classes of idempotent totally symmetric
quasigroups computed by McKay and Wanless for those orders n < 16
that have such objects (n = 3, 7, 9, 13, 15).
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It is worth noting that this last observation provides corresponding results
for n = 16 (namely that there are 80 isomorphism classes of unipotent totally
symmetric quasigroups of this order), which the software corroborates.

Finally, we offer a slight strengthening of an observation from Bruck
[Bru44, Lemma 10]:

Theorem 3. A totally symmetric quasigroup is a group if and only if it is an
elementary abelian 2-group. When this occurs the quasigroup is both medial
and unipotent.

Proof. That an elementary abelian 2-group is a medial, unipotent, totally
symmetric quasigroup is clear.

To establish the converse, let Q be a totally symmetric quasigroup, and
assume Q is a group. Let x ∈ Q and suppose xx = y. It follows by total
symmetry that xy = x, so

x(xy) = (xx)y = y.

Hence xx is the identity for every x ∈ Q. Since every nonidentity element
has order 2, Q is an elementary abelian 2-group.

Procedural Summary

Viewing a totally symmetric quasigroup as a Latin square, or, equivalently,
as being represented by its Cayley table, the entries along the main diagonal
are of precisely two types – those for which xx = x (i.e. idempotent ele-
ments) and those for which this is not the case. In [Bai79a] Rosemary Bailey
presented criteria constraining the quantity of each type of diagonal entry
based on the order n of the quasigroup, and further described a procedure for
constructing directed graphs for each permissible configuration of the diago-
nal. The software developed to enumerate quasigroups for this paper begins
by constructing these “Bailey graphs;” for n = 16 there are 980 distinct,
non-isomorphic Bailey graphs: 901 with one idempotent element, 77 with 4
idempotent elements, and 2 with 7 idempotent elements. These correspond
to 980 starting configurations, each with a distinct, non-isomorphic arrange-
ment of the elements on the diagonal, and – in deference to the magnitude
of the problem – each is processed separately, with the results recorded and
ultimately combined.
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The fundamental process amounts to constructing totally symmetric quasi-
groups (by building their Cayley tables) and then checking completed in-
stances for isomorphism to quasigroups already constructed. In [MW22]
McKay and Wanless describe a technique for extending a Bailey graph to
a directed graph that completely describes the quasigroup; this we do, al-
lowing us to use the nauty graph automorphism software [MP14] to test for
isomorphism.

A great deal of technical sleight-of-hand is required to make the algo-
rithm workable in practice. . . Although there is a wide range of complexity
among the starting configurations, a fairly typical example might have ap-
proximately 25 billion isomorphism classes and 500 sextillion quasigroups.
Maintaining data structures for individual quasigroups is thankfully not nec-
essary, but maintaining 25 billion isomorphism classes – with enough infor-
mation to distinguish them from each other – is a daunting task, and in fact
cannot be done within any reasonable limit on the amount of computer mem-
ory. The McKay-Wanless graph for n = 16 requires 408 bytes to represent
in nauty; using compression to approximately halve this amount still re-
sults in an isomorphism class structure that requires roughly 240 bytes. This
amounts to over 6 terabytes of memory just to store the isomorphism classes;
naturally there are other memory requirements as well, making the prospect
unfeasible for even the most powerful of today’s readily available consumer
computers. This limitation is addressed by maintaining a large hash table of
isomorphism classes, and, when an appropriate memory threshold is reached,
flushing sections of the hash table to disk for storage and later processing.
As the process is ongoing, this then requires further flushing of newly con-
structed isomorphism classes to disk, should they happen to belong to already
flushed sections of the hash table. In some of the more challenging configu-
rations the available disk space proves to be insufficient for the task, leaving
no option but to discard some of the flushed sections of the hash table; when
this occurs subsequent iterations through the entire process are required to
recover the abandoned data.

Regarding hardware, the project was completed on a pair of Dell Precision
5810 workstations (running Fedora Linux at runlevel 3); both computers
were equipped with 256 GB of RAM and 12 terabytes of hard drive space
(comprised of three 4 terabyte drives, configured in a RAID0 array). One
of the computers had an additional 1 TB solid state drive; that computer
was outfitted with an Intel Xeon E5-2699A v4 22-core 2.4 GHz processor;
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the other had an Intel Xeon E5-2697A v4 16-core 2.6 GHz processor. (These
specifications reflect the ultimate configurations of the two systems; there
was initially only one, and much upgrading of components – including CPUs,
memory, and disk drives – was performed while the project was ongoing.) The
final results reported herein were obtained after approximately 12 months of
computing.

Acknowledgments

This paper was greatly improved through correspondence with Benjamin
Young, who brought to my attention Schwenk’s results on the number of
isomorphism classes of medial totally symmetric quasigroups, thereby disem-
barrassing me of a simpler (and incorrect) conjecture that I would otherwise
have submitted for publication. Much obliged, Ben.

Heartfelt thanks to Jeff Robbins of LiveData Inc., who generously shared
his unparalleled knowledge of modern computing platforms and techniques,
helping design the fantasy system for which the funding unfortunately never
materialized. . . My remarkable brother-in-law, Robert Edelstein, a writer
with no advanced mathematical training, somehow managed to beat me to
the discovery of a body of published research on these objects. . . His contin-
ued sincere interest provided a much needed outlet for my frequent, detailed,
elaborate bursts of obsessive enthusiasm; thank you, Rob. Thanks as well
to the brilliant Matthew Welz – my “mathematical brother” – for his assis-
tance during the early stages of the work, and to our “mathematical father,”
Richard Foote, without whom, as far as I am concerned, there would be no
mathematics – as far as I am concerned, Richard said “Let ε > 0 be given,”
and there was light . . .

References

[Bai79a] R. A. Bailey, Enumeration of totally symmetric Latin squares, Util.
Math. 15 (1979), 193–216.

[Bai79b] , Corrigendum to enumeration of totally symmetric Latin
squares, Util. Math. 16 (1979), 302.

8



[Bru44] R. H. Bruck, Some results in the theory of quasigroups, Trans.
Amer. Math. Soc. 55 (1944), 19–52.

[Eth65] I. M. H. Etherington, Quasigroups and cubic curves, Proc. Edin-
burgh Math. Soc. 14 (1965), 273–291.

[Mar97] A. W. Marczak, On nondistributive Steiner quasigroups, Colloq.
Math. 74 (1997), no. 1, 135–145.

[MP14] B. D. Mckay and A. Piperno, Practical graph isomorphism II, J.
Symbolic Comput. 60 (2014), 94–112.

[Mur41] D. C. Murdoch, Structure of abelian quasigroups, Trans. Amer.
Math. Soc. 47 (1941), 134–138.

[MW22] B. D. Mckay and I. M. Wanless, Enumeration of Latin squares with
conjugate symmetry, J. Combin. Des. 30 (2022), 105–130.

[OEI] The on-line encyclopedia of integer sequences, published electroni-
cally at https://oeis.org, OEIS Foundation, Inc.

[Sch95] J. Schwenk, A classification of abelian quasigroups, Rend. Mat.
Appl. 15 (1995), 161–172.

[Shc05] V. A. Shcherbacov, On the structure of finite medial quasigroups,
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